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Abstract—High-frequency distortion in bipolar transistors
is examined by using the charge-control approach of Poon and
Narayanan to connect the device’s distortion behavior to its
“loaded” unity–current–gain frequency (^ ). The resulting
expressions for the distortion reveal considerable information
on its frequency and bias dependence. Points on the ^ versus
collector current curve yielding optimum distortion performance
are identified and interpreted in terms of current cancellation.
Both second- and third-order distortion are considered, and the
results are validated by both simulation and experiment.

Index Terms—Current cancellation, harmonic distortion,
heterojunction and homojunction bipolar transistors,
high-frequency distortion, intermodulation distortion, linearity,
nonlinear distortion, unity–current–gain frequency, Volterra
series.

I. INTRODUCTION

OVER THE years, the problem of high-frequency distor-
tion in bipolar transistors has been extensively studied.

Among the earlier works, Narayanan [1], [2] was the first to
present a detailed examination of distortion using Volterra
series; Chisholm and Nagel [3] and Kuo [4] focused on com-
puter algorithms for calculating distortion in transistor circuits;
Poon and Narayanan [5]–[7] combined Volterra series with a
charge-control approach; Abraham and Meyer [8] employed
a simplified transistor model to suggest design guidelines for
low distortion; and many others contributed to the literature, as
cited by these authors, and in a comprehensive review paper
by Lotsch [9]. More recently, Maas et al. [10] attributed the
surprisingly good linearity of heterojunction bipolar transis-
tors (HBTs) working at high frequencies to a cancellation
of nonlinear currents arising from the dynamic resistance
and capacitance of the emitter–base junction. This analysis
was followed by a number of studies that were mostly of an
empirical nature, leading to various observations on the factors
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affecting high-frequency distortion; for example, comments
were made on the role of current cancellation [11]–[14], the
feedback effect of the parasitic base and emitter resistances
[15], [16], the impact of the nonlinear, collector–base depletion
capacitance [14]–[19], the importance of base–collector transit
time [16], [19], and the choice of bias voltage and current [14],
[16]–[20]. Studies have also been undertaken to examine the
distortion behavior of other important microwave devices; for
example, Pedro et al. [21]–[23] recently examined distortion
in metal–semiconductor field-effect transistors (MESFETs).
Despite all of these investigations, a general description of
high-frequency distortion, which offers good physical insight
and can be applied to a wide variety of devices, is still lacking.
This shortcoming stems mainly from the fact that nonlinear
distortion is an involved problem, which is not amenable to
easy solution; even when expressions for transistor distortion
can be found, they are typically very complex, and involve
numerous terms that offer little intuition.

In this study, we develop a basic theory of high-frequency
distortion in bipolar transistors by employing the charge-control
approach suggested by Poon and Narayanan [5]–[7]. Use of the
charge-control approach alleviates much of the usual difficulty
in analyzing distortion, and leads to powerful expressions that
relate the distortion generated by the transistor to its transcon-
ductance and unity–current–gain frequency, and to the deriva-
tives of these quantities with respect to base–emitter voltage and
collector current, respectively. In particular, the connections be-
tween the distortion and unity–current–gain frequency provide
substantial information on the frequency and bias dependence of
the distortion characteristics, and offer new insight into the can-
cellation phenomenon described by Maas et al. [10]. The result,
which we validate using both simulation and experiment, is a
useful step toward a general theory of distortion.

In Section II, the transistor model used for the analysis is pre-
sented, and the equations needed to combine the charge-control
approach with Volterra series are formulated. In Section III,
expressions are found for the second-order distortion charac-
teristics, and their predictions are compared with simulation
and experiment. In Section IV, expressions are derived for
the third-order intermodulation distortion and then applied to
practical devices. Section V summarizes the conclusions.

II. ANALYTIC APPROACH

A. Model

Fig. 1 shows the transistor model used in the analysis. The
elements and their assumed functional dependencies on the total
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Fig. 1. Large-signal transistor model used in the analysis. The definitions of
the elements are given in the text. Nonlinear elements are marked in the usual
fashion.

(static plus small-signal) values of the internal base–emitter and
base–collector voltages, and , are as follows.

1) is the constant supply voltage.
2) is the total source voltage.
3) is the sum of the external source and device base

resistances.
4) is the sum of the external load and device collector

resistances.
5) is the sum of any external emitter and device emitter

resistances.
6) is the charge associated with the emitter–base

depletion capacitance.
7) is the emitter portion of the stored free charge.
8) is the total collector charge, which in-

cludes both the collector portion of the stored free
charge and the charge associated with the collector–base
depletion capacitance.

9) is the quasi-static collector current.
10) is the quasi-static base current.

The circuit in Fig. 1 represents the simplest adequate model
with which to examine the problem. Important features of this
model are as follows.

• Effects arising from the falloff of the transistor’s
unity–current–gain frequency at high currents are au-
tomatically included, since the charges and

can have an arbitrary (or ) and
dependence.

• The terminations , , and are assumed to be
purely resistive. This assumption not only simplifies the
analysis, but also leads to useful results that connect
(through charge-control relations) the distortion gener-
ated by the transistor to its unity–current–gain frequency,
the latter being defined under conditions in which ,

, and take on resistive values determined solely
by the device parasitics. In addition, characterizing
distortion with resistive terminations offers advantages
with respect to evaluating the capabilities of a technology
under standardized conditions [20, p. 1530]. From these
perspectives, the distortion expressions derived in this
study can be viewed as figures-of-merit for device lin-
earity. We have also found these expressions to be useful
in the design of real broad-band power amplifiers [24].
However, in specific circuit applications, it should be

noted that the distortion performance will depend on the
exact nature of the terminations [25], [26].

• A number of other simplifications in the model are nec-
essary to keep the analysis manageable, including the
neglect of the Early effect, the neglect of avalanche break-
down, the neglect of self-heating [27], the assumption
of a linear base resistance (which is lumped into ),
and the neglect of collector–substrate capacitance, which
is present in Si-based devices. However, each of these
should have only secondary impacts, as illustrated, for
example, by the work in [20], where numerical results
from a model [20, Fig. 1(b)] that is very similar to the
one used here were shown to be in good agreement [20,
Figs. 4–7] with those from a much more involved model
[20, Fig. 1(a)] as well as experiment.

B. Formulation

Using Kirchoff’s laws, it is possible to write the following
circuit equations:

(1)

(2)

where and are effective
load and source resistances, respectively, and where the terminal
currents are

(3)

and

(4)

with being the total charge in the transistor, given by

(5)

If the current gain is high and the operating frequency is re-
stricted to a few times below the unity–current–gain frequency,
then combining (1)–(4) and retaining only the most important
terms, it is easy to obtain the following simplified set of circuit
equations:

(6)

(7)

Since in Fig. 1 is a known function of , the voltage
can be eliminated between (5) and (6), and the small-signal

base–emitter voltage , and the small-signal collector current
, can each be expanded as a Taylor series in the small-signal

charge :

(8)

(9)

As shown in Appendix I, the series coefficients in (8) and (9)
can be expressed in terms of the transconductance and its
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derivatives ( and ) with respect to the base–emitter voltage
, and in terms of the “loaded” unity–current–gain frequency,

denoted , and its derivatives ( and ) with respect to
.

The definition of , given by (56) in Appendix I, differs
from the usual unity–current–gain frequency of the transistor

, since and in Fig. 1 include external
loading elements in addition to the transistor’s own parasitic
collector and emitter resistances. These external elements
accentuate the feedback effect of , which is represented in
(56) by the time constant. Thus, and its
derivatives contain more information on this feedback than

and its derivatives. However, for typical external loads,
the distinction is unimportant; the qualitative behavior of both
sets of quantities will be similar. This follows because, at low
currents, both and are primarily determined by the
depletion capacitances (as opposed to the feedback through

), and at high currents, the peaking and subsequent falloff
of both depends primarily on the nonlinear behavior of the
stored free charge (arising, for example, from base-widening
effects). Therefore, the qualitative links that connect to the
distortion behavior also apply to (see Figs. 3 and 6).

The small-signal version of (7) is

(10)

In this equation, can be expressed as a power series in :

(11)

As shown in Appendix I, the coefficients in this expansion may
be written in terms of the low-frequency current gain , and its
derivatives with respect to . However, we will assume that
the relationship between and is purely linear, in which
case (11) reduces to

(12)

with . While the relationship be-
tween the low-frequency base and collector currents can be
significantly nonlinear, especially at high bias, the resulting
effects are less important for the distortion behavior at high
operating frequencies, unless the value of is very low. Thus,
employing (12), (10) becomes

(13)

where defines an effective current gain.
Substituting (8) and (9) into (13), and expanding as a

Volterra series in

(14)

where “ ” denotes the Volterra operator [25, p. 549], and where
, , and are the parametric input frequencies within the

Volterra formalism, one can solve successively for the kernels
, , and in the customary way

[28, pp. 178–186]. Writing the output current as a
Volterra series in

(15)

and substituting (14) and (15) into (9), one can then obtain the
kernels , , and .

III. SECOND-ORDER DISTORTION

A. Kernel

The result for the second-order kernel is

(16)

where is a critical corner frequency for distortion behavior,
given by

(17)

with being the 3-dB frequency for the loaded
current gain, and being the intrinsic common-
emitter input resistance. Equation (16) will first be used to
examine the cancellation theory presented by Maas et al. [10],
and then it will be compared with experimental and simulation
results for the second-order distortion.

B. Current Cancellation

In [10], the authors report on the effects of current cancella-
tion on the device linearity at high frequencies. To examine this
phenomenon more closely, it is necessary to write (16) in an
alternative form. In terms of the power-series coefficients used
in [10], namely, those in the expansions

(18)

and

(19)

where is the low-frequency common-base
current gain, (16) can be written as follows:

(20)

Of interest in (20) is the term

(21)
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in the numerator of the last factor. As pointed out in [10], this
term embodies a subtraction, or cancellation, of second-order
current components arising from the device’s nonlinear
transconductance and nonlinear stored charge; these currents
are proportional to and , respectively. The effect of this
cancellation is to minimize the overall distortion by driving the
magnitude of (21) to zero. For example, consider an “ideal”
transistor, in which the stored charge is directly proportional to
the collector current:

(22)

where is a constant transit time. For such a device,
, , and the cancellation is perfect, so that

(21) vanishes completely. More generally, of course, is given
by (5), and the cancellation is imperfect. A visualization of the
cancellation mechanism is provided in Appendix II.

A comparison of (16) and (20) allows an important insight to
be gained into the cancellation phenomenon. The term in (16)
corresponding to (21) is clearly

(23)

where and . There-
fore, the extent of the cancellation is indicated by the slope of
the versus collector current curve; the cancellation is per-
fect only where the slope is zero. In an ideal transistor, where

is given by (22), is a constant, and for
all values of the collector current; in this case, the cancellation
is always perfect. More generally, in a real device, is given
by (5), and the cancellation is imperfect, unless the device is bi-
ased at the peak of its curve (where ). Intuitively,
it might then be expected that a real device’s distortion perfor-
mance becomes optimal when it is operated at this point. As
will be demonstrated shortly, this is indeed true, but only for the
distortion at certain mixing frequencies, and only when the fun-
damental frequency is sufficiently high.

C. High-Frequency Distortion

1) Simulation: In order to validate (16) for the second-order
kernel, we compared its predictions with results from numerical
simulation. The simulations were performed with a commercial
Volterra solver,1 into which we implemented a nonlinear
small-signal equivalent circuit for the transistor, based on the
SPICE Gummel-Poon model [29] under low-level injection.
Key SPICE parameter values for the chosen device, which was
a representative IBM Si/SiGe HBT [30], [31] working below its
peak , are given in Table I. At the chosen operating point, the
bias values of collector current and external collector–emitter
voltage were 1.2 mA and 1.8 V, respectively, and the was
27 GHz. The external source and load were set to 200 and
50 , respectively.

Fig. 2 shows the magnitude and phase of the output distortion
currents at the mixing frequencies and , found for a
two-tone input at frequencies and , and plotted versus the

1Microwave Office Software, Applied Wave Research Inc., El Segundo,
CA. [Online]. Available: http://www.mwoffice.com

TABLE I
KEY SPICE PARAMETER VALUES FOR AN IBM Si/SiGe HBT [30],[31]

fundamental frequency . The tone spacing was set
to 1 MHz, and the source amplitude corresponded to 30 dBm
of available power. Values from simulation are presented along
with those from the expressions

(24)

and

(25)

As shown in Fig. 2, there is good agreement in both magnitude
and phase, for both the and outputs. The discrepancy
in the phase of the output at high fundamental frequencies
(on the order of ) occurs because of the neglected terms in (1)
and (2). Improved agreement in the phase was obtained when
the excess-phase parameter (PTF in SPICE) was set to zero
in the simulations; alternatively, it should be possible to get
better agreement by simply multiplying (16) by an excess-phase
factor, such as one of the form , where
is the excess-phase time delay.

2) Output Distortion at : Equation (16) can be exploited
to gain a deeper understanding of the transistor’s high-frequency
distortion characteristics. For convenience in this and subse-
quent discussions, we will assume a two-tone input with tone
frequencies at and a tone spacing of

, and then express the results in terms of and .
Consider the magnitude of the output distortion at a mixing

frequency of , given by (24). In the context of the transistor’s
distortion behavior, “high frequencies” are those satisfying the
relation

(26)
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(a)

(b)

Fig. 2. Simulated and computed [using (24) and (25)] values of the
(a) magnitude and (b) phase of the output distortion at the mixing frequencies
2! and ! � ! , plotted versus the fundamental frequency f � ! =2�.
The device is the Si/SiGe HBT described in Table I, and f � 27 GHz at the
chosen operating point. The magnitude values are quoted in terms of the power
dissipated in a 50-
 external load.

where is the critical corner frequency specified in (17). For
such fundamental frequencies, (16) and (24) imply

(27)

The distortion at will thus roll off with fundamental fre-
quency at a rate between 60 and 40 dB decade, depending
on the magnitudes of the two terms in (27). For operation of the
transistor at the peak of its curve, where , the second
term in (27) vanishes, and the rate will be 60 dB decade. At
other operating points, the second term in (27) will eventually
dominate (for sufficiently large ), and the rate will lie closer to

40 dB decade, as illustrated in Fig. 2(a). An idea of how large
needs to be for this to occur can be obtained by examining a

simplified case. For example, consider a “near-ideal” transistor,
where it is possible to write

(28)

(29)

and

(30)

with , , , , and all being constant, and where is
the thermal voltage. For such a device, one then finds that the
second term in (27) will dominate when

(31)

where

(32)

More generally, with a real device, (28)–(30) can be viewed as
crude representations of the transistor charge, collector current,
and unity–current–gain frequency prior to the onset of high-cur-
rent effects, and the right-hand side of (32) can be considered as
a rough estimate of that applies for operating points up to
the peak in the curve.

In general, the critical frequencies and appearing
in (26) and (31) can be quite high. The value of in (17) is
clearly greater than , the 3-dB frequency for the loaded
current gain; in fact, inspection of (17) reveals that will
fall well below the transistor’s only when the
source resistance is large and the emitter resistance is small.
For example, for the device considered in Table I and Fig. 2, it
turns out . If one decreases the external source
resistance from 200 to 50 , and adds 10 of external emitter
degeneration, then will become even larger, with a value
of approximately . Similar comments apply to ,
given by (32) (although, in this case, a low value of is
not necessary). Such points should be borne in mind when
deciding whether a given operating frequency is “high” or
“low” from a distortion perspective.

When both (26) and (31) are satisfied, the high-frequency
value of that follows from (27) is

(33)

Since the fundamental output at high frequencies can be written
as

(34)

the transistor’s output-intercept point becomes

(35)

Thus, the versus collector current curve should be as
constant as possible to maximize the high-frequency value
of . Moreover, will reach its absolute
maximum value for operation of the transistor near the peak
of the curve. These points are consistent with the experimental
observations of Schröter et al. [20, p. 1533], who examined
integrated silicon transistors, as well as our own measurement
results for an InGaP/GaAs HBT, presented in Fig. 3.
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Fig. 3. (a) Measured values of OIP (2! ) versus collector current for an InGaP/GaAs HBT at different collector–emitter bias voltages. The device is “HBT-C”
described in [16, Sec. V-A], and the values are quoted in terms of the power dissipated in the external measurement load of 50 
. The operating frequency is
5 GHz. (b) Corresponding values of the extrapolated short-circuit unity–current–gain frequency f � ! =2�. (c) Values of OIP (2! ), for the same device,
found from (37) as described in the text.

Shown in Fig. 3(a) are high-frequency values of
versus collector current, at different collector–emitter bias volt-
ages, for the InGaP/GaAs device described as “HBT-C” in [16,
Sec. V-A]. The measurement approach was the same as that
in [16, Sec. II-B], and the fundamental frequency was 5 GHz.
The external source and load were each set to 50 . Rigorously,

at each point in Fig. 3(a) is related to the loaded
unity–current–gain frequency and its first derivative , as
specified by (35). However, as discussed earlier in Section II-B,
for the purposes of examining the qualitative trends predicted
by this expression, the short-circuit values and can be
used instead; these are readily found from the plot in Fig. 3(b).

Comparing Fig. 3(a) and (b) verifies the main predictions of
(35). For example, at each collector–emitter bias considered,
the peak in coincides with the peak in the corre-
sponding characteristics. For operation at high currents (fol-
lowing the peaks in the curves), is the worst
for a collector–emitter voltage of 2 V, which also exhibits the
lowest values of and the highest values of . Finally, set-
ting , and combining (27) and (34), yields the value of

to expect when the device is operated at the peak of
its curve:

(36)

If we assume, for simplicity, that the collector current follows
the ideal law (29), then (36) suggests that will
be higher for lower values of peak unity–current–gain frequency
occurring at higher currents; the results in Fig. 3(a) and (b) are
consistent with this prediction.

A more detailed comparison of the analysis in this study
with the results from experiment is facilitated by considering
Fig. 3(c), where we have plotted values of obtained
from the expression

(37)

with and found
from (16). Values of and to use on the right-hand side of
(37) were estimated by fitting polynomials to the measured
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TABLE II
PARAMETER VALUES FOR THE MEASURED DEVICES

curves in Fig. 3(b). In each case, the degree of the fitting poly-
nomial was chosen so that the fitted curve would not only return
the measured values with negligible error, but also reproduce
the measured trends in the versus collector current behavior
with a minimum amount of “polynomial wiggle” [32, p. 231].
Polynomial wiggle must be avoided to extract derivatives reli-
ably from the measured data. The other parameter values needed
to evaluate the right-hand side of (37) were obtained as follows:

and its derivatives were found by assuming the collector cur-
rent obeyed the ideal law (29) with and V;
and , , and were found from knowl-
edge of the device parasitics and current gain, with the relevant
values given in Table II. Comparing Fig. 3(a) and (c) makes it
clear that (37) is capable of predicting all the measured trends.

While the results in Fig. 3(a) were obtained for operation at
5 GHz, further measurements of at 1 GHz, shown
in Fig. 4(a), revealed quite different trends; correspondingly,
evaluation of (37), carried out in the same manner as that for
Fig. 3(c), except at an operating frequency of 1 GHz, yields
the curves shown in Fig. 4(b), which again matches experiment.
This behavior is to be expected, since the trends in Fig. 3 are
predicted to occur only at sufficiently high operating frequen-
cies (above and ).

3) Output Distortion at : Equation (16) can also
be used to examine the magnitude of the output distortion at
a mixing frequency of , given by (25). In this case, in
addition to high tone frequencies, as specified by (26), it will be
assumed that the tone spacing is small:

(38)

and

(39)

Equations (16) and (25) then imply

(40)

where (17) has been used to eliminate . Thus, the magnitude
of the distortion at will always exhibit a 40-dB/decade
rolloff with fundamental frequency, as illustrated in Fig. 2(a), in-
dependent of the transistor’s operating point. The corresponding
output-intercept point becomes

(41)

which can easily be shown to be the same value as that occurring
at low fundamental frequencies ( ). Note that, unlike
the situation at , neither the distortion in (40), nor the cor-
responding output-intercept point in (41), is related to , and

(a)

(b)

Fig. 4. (a) Measured values of OIP (2! ) for the same device and the same
collector–emitter bias voltages as in Fig. 3, but at an operating frequency of
1 GHz; the values are quoted in terms of the power dissipated in the external
measurement load of 50 
. (b) Values of OIP (2! ) predicted by (37),
evaluated as described in the text.

hence no advantage is gained by operating the transistor at the
peak of its curve. This can be understood by realizing that the
current-cancellation mechanism discussed earlier (between the
nonlinear stored charge and nonlinear transconductance) does
not control the output distortion when (39) is satisfied.

4) Phase Behavior: The phase behavior of the distortion
currents at the output follows from (16), (24), and (25) in
a straightforward manner. At sufficiently high fundamental
frequencies, the phase of the output will ideally fall toward

180 (neglecting excess phase), as illustrated in Fig. 2(b);
this will become 270 for operation of the transistor at the
peak of its curve. On the other hand, for sufficiently small
tone spacing, the phase of the output will remain at
zero, even if the tone frequencies themselves are high; this is
also illustrated in Fig. 2(b).

IV. THIRD-ORDER INTERMODULATION DISTORTION

A. Kernel

Of particular interest for modern radio-frequency applica-
tions is the third-order intermodulation distortion at ,
assuming, as before, two equal-amplitude input tones at the fre-
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Fig. 5. Simulated and computed [using (44)] magnitude and phase of the
output distortion at 2! � ! , plotted versus the fundamental frequency
f � ! =2�. The device is the Si/SiGe HBT described in Table I, and
f � 27 GHz at the chosen operating point. The magnitude values are quoted
in terms of the power dissipated in a 50-
 external load.

quencies and . The corresponding value of the third-order
Volterra kernel appearing in (15) is (42), shown at the bottom
of the following page, where , , and

are various mixing frequencies, and where the
symbol is given by the expression

(43)

The output distortion is then

(44)

and the corresponding output-intercept point is

(45)

where was given below (37).

B. Comparison With Simulation and Experiment

Fig. 5 shows the magnitude and phase of the distortion com-
puted from (44) along with simulation results; the parameter
values and conditions are the same as those in Section III-C.1 for
examining the second-order distortion. There is good agreement
in both magnitude and phase, at both low and high fundamental
frequencies. As with the second-order results, the discrepancy
in the phase at frequencies on the order of GHz and
above occurs because of the neglected terms in (1) and (2).

Fig. 6(a) shows a comparison of the output-intercept point
computed from (45) with results obtained from experiment.
The measured devices are “HBT-A,” “HBT-B,” and “HBT-C,”
described in [16, Sec. V-A], and the measurement approach
was the same as that in [16, Sec. II-B]. The fundamental
frequency was 5 GHz and the tone spacing was 1 MHz, and
the external source and load resistances were set to 50 and
260 , respectively. The collector–emitter bias voltage was 4 V
for HBT-A, and 5 V for HBT-B and HBT-C. Parameter values
to use on the right-hand side of (45) were found in the same
manner as previously described for the evaluation of (37), with

(a)

(b)

Fig. 6. (a) Measured (symbols) and computed values, using (45) (solid lines)
and (53) (stippled lines), of OIP (2! � ! ) versus collector current for the
InGaP/GaAs devices described as “HBT-A,” “HBT-B,” and “HBT-C” in [16,
Sec. V-A]. The operating conditions are described in the text, and the values
are quoted in terms of the power dissipated in the external measurement load of
260
. (b) Measured values of the extrapolated short-circuit unity–current–gain
frequency f � ! =2� corresponding to the measured values ofOIP (2! �

! ) in (a).

the data extracted from the curves in Fig. 6(b). Inspection
of Fig. 6(a) reveals that there is good agreement between (45)
and the measured values; the complex bias dependence of

, including the occurrence of distinct peaks,
is predicted correctly for all three devices.

The involved nature of in (42) makes it dif-
ficult to obtain insight into all aspects of the distortion behavior
in Figs. 5 and 6. However, some useful information can be found
by examining a few asymptotic limits of this expression.
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C. Asymptotic Limits

1) High-Frequency Limit: In the limit of infinite tone fre-
quencies ( ) and vanishing tone spacing
( ), the magnitude of (42) takes on a value

given by

(46)

At sufficiently high tone frequencies, and for sufficiently small
tone spacing, the output distortion at will hence roll off
with fundamental frequency at 60 dB decade, as illustrated in
Fig. 5(a).

2) Ideal-Transistor Limit: In the case of an ideal transistor,
where the charge function is given by (22), both and
vanish. While (46) is thus zero, the output distortion in such a
device actually takes on a nonzero value determined by the high-
frequency limit of (42) found under the constraint that

:

(47)

which implies a 80-dB/decade rolloff for the output distortion.
Note that this result vanishes completely only if, in addition to
(22), the collector current is governed by the ideal law (29), the
low-frequency gain is infinitely high ( ), and there is no
emitter degeneration ( ).

3) Actual Value at High Frequencies: The actual value of
at high frequencies can be written in terms

of the limits in (46) and (47), plus an extra term. Provided the op-
erating frequency is well above the critical distortion frequency

, as specified by (26), and the tone spacing is small

(48)

then expanding (42), and using (26) and (48) to discard the less
important terms, after considerable manipulation, one finds

(49)

where is an additional term given by

(50)

and can be written in terms of , , and their deriva-
tives. The result for , which is somewhat untidy, is given in
Appendix III; note that for an ideal transistor (where

), and that simplifies considerably when the
device is operating at the peak of its curve (where ).
When is nonzero, it can be positive or negative, so that in
(50) provides a positive or negative adjustment to the limits in
(46) and (47) that diminishes with fundamental frequency at

80 dB decade.

D. Discussion

Using (34) to write and employing (49)
for , (45) yields

(51)

as the value of the output-intercept point at high frequencies.
In general, all three terms in the denominator must be retained,
making (51) quite involved. However, further insight into this
expression can be obtained by extending the cancellation theory
proposed by Maas et al. [10].

As detailed in Appendix IV, the limit embodies a
cancellation of third-order intermodulation currents generated
by the transistor’s nonlinear transconductance and nonlinear
stored charge; furthermore, can be expressed in terms
of the series coefficients in (18) and (19), and in terms of the
lower order mixing voltages appearing across the transistor’s
base–emitter terminals, as follows:

(52)

(42)
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where and refer to the intermodulation
currents, at a mixing frequency of , generated by the
nonlinear transconductance and the nonlinear stored charge, re-
spectively. In the case of an ideal transistor, where the charge
function is given by (22), the cancellation is always perfect and
(52) always vanishes, since and

; alternatively, and , so that (46) al-
ways vanishes. More practically, in a real transistor, will
vanish and the cancellation will be perfect only when the bias
point is chosen such that the coefficients and lower order mixing
voltages appearing in (52) have the appropriate magnitude and
phase; mathematically, a condition for this to occur, in terms
of , , and their derivatives, can be found by setting the
right-hand side of (46) to zero. Generally, no simple solution
exists for the resulting equation, but if we assume that the col-
lector current is governed by the ideal law (29), then the required
information is contained in the transistor’s curve.

Intuitively, it might be expected that is the most
important term in the denominator of (51), since it represents
the effects of third-order cancellation in the high-frequency
limit. The corresponding assumption has already been shown
to be true for the second-order distortion at ; referring back
to Section III-C.2, recall (33) and (35), and note that these
expressions essentially represent the distortion and output-
intercept point as , and that they are both governed by

, the sole determinant of cancellation in the second-order
case. Thus, neglecting the last two terms in the denominator
of (51), the output-intercept point becomes

(53)

This result predicts that will become a constant
at sufficiently high frequencies, and is hence consistent with
previous experimental observations [10, p. 445], [33, Fig. 4].
However, its utility is best demonstrated by applying it to our
own measurements.

In Fig. 6(a), we have superimposed the predictions of (53),
evaluated in the same way as (45), onto the existing curves,
and it becomes evident that (53) is capable of predicting all the
qualitative trends. More importantly, it is clear that the peaks in

occur at those bias points where
and , where there is perfect cancellation between
the intermodulation distortion currents generated by the non-
linear transconductance and nonlinear stored charge. These
observations are further validated by the results in Fig. 7(a),
where we have compared the predictions of (53), evaluated
using the curves in Fig. 7(b), with experimental data for the

of HBT-C working at two collector–emitter
bias voltages. When the collector–emitter bias is changed, the
peak in shifts, and this is correctly predicted
by (53).

Equation (53) also leads to a useful conclusion regarding the
distortion performance at the peak of the curve, where the
high-frequency gain is the highest. Setting , and em-
ploying (46) in (53), yields

(54)

(a)

(b)

Fig. 7. (a) Measured and computed [using (53)] values of OIP (2! � ! )
versus collector current, at two different collector–emitter bias voltages, for the
InGaP/GaAs device described as “HBT-C” in [16, Sec. V-A]. The values are
quoted in terms of the power dissipated in the external measurement load of
260
. (b) Measured values of the extrapolated short-circuit unity–current–gain
frequency f � ! =2� corresponding to the measured values ofOIP (2! �

! ) in (a).

Therefore, for optimum distortion performance when the tran-
sistor is operated at the peak of its curve, the curve should
be as flat as possible. Since at the peak, this merely
reflects the fact that as , the transistor behaves more
ideally, causing the third-order current cancellation between
the nonlinear transconductance and the nonlinear stored charge
to become more complete, and the distortion performance to
improve. The results in Fig. 6 are consistent with (54). For op-
eration of the transistor near the peak of its curve, HBT-A
exhibits the best performance, and HBT-C exhibits the worst
performance; correspondingly, HBT-A has the highest value
of peak and the least curvature in its plot, and HBT-C
has the lowest value of peak and the greatest curvature
in its plot.

V. CONCLUSIONS

The following conclusions can be drawn from this study of
high-frequency distortion in bipolar transistors.

1) By employing the charge-control approach originally
suggested by Poon and Narayanan [5]–[7], it is possible
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to relate the transistor’s distortion to its transconductance
, its “loaded” unity–current–gain frequency ,

and the derivatives of these quantities with respect to
base–emitter voltage and collector current, respectively.
For the purposes of identifying qualitative trends in
the distortion performance, a plot of the short-circuit
unity–current–gain frequency versus collector current
can usually be used in lieu of knowledge of and its
derivatives.

2) For the second-order distortion, the extent of current
cancellation between the nonlinear transconductance and
nonlinear stored charge [10] is determined by the slope
of the versus collector current curve; the cancellation
is perfect only where the slope is zero, i.e., at the peak
of the curve.

3) For operating frequencies sufficiently above a critical dis-
tortion frequency , the magnitude of the second-order
distortion at will fall with fundamental frequency at a
rate between 40 and 60 dB decade, and the phase will
fall toward 180 and 270 , with each of the latter quan-
tities occurring for operation of the transistor at the peak
of its curve, which also yields the maximum value for
the output-intercept point .

4) For high operating frequencies (above ) and small
tone spacing (below and ), the magnitude of the
second-order distortion at will always fall at

40 dB decade, regardless of the transistor’s operating
point. The phase of the distortion is zero, even at high
fundamental frequencies, and the output-intercept point

has the same value at both low and high
fundamental frequencies.

5) For high operating frequencies (above ) and small tone
spacing (below ), the magnitude of the third-order
intermodulation distortion at will roll off
with fundamental frequency at a rate between 60 and

80 dB decade, the latter being achieved at those points
on the curve where the high-frequency limit in
(46) vanishes.

6) The limit embodies a cancellation of third-order
intermodulation currents generated by the nonlinear
transconductance and the nonlinear stored charge
[10], and the high-frequency output-intercept point

thus peaks wherever vanishes.
To maximize when the transistor is
operated at the peak of its curve, the curve should be
as flat as possible.

APPENDIX A
EXPRESSIONS FOR THE TAYLOR-SERIES COEFFICIENTS

From basic charge-control theory and the definition of , it
follows that2

(55)

2Each Taylor-series coefficient is to be evaluated at the transistor’s operating
point.

where is the “loaded” unity–current–gain frequency. The
conventional expression for follows from (5) and (6):

(56)

where the device capacitances are ,
, , and , and

where the transconductance is . The values
of and follow from (55) and their definitions:

(57)

(58)

where and are the first and second derivatives, respec-
tively, of with respect to , found under the circuit
constraint of constant .

An expression for in terms of and follows by writing

(59)

Similarly, one can find

(60)

and

(61)

where and are the first and second derivatives, respec-
tively, of with respect to .

The coefficient is the reciprocal of the common-emitter
low-frequency current gain:

(62)

The coefficients and can then be written as follows:

(63)

(64)

where and are the first and second derivatives, respec-
tively, of with respect to .

APPENDIX B
VISUALIZATION OF THE CANCELLATION MECHANISM

The cancellation or subtraction of terms in (21) can be viewed
as a manifestation of voltage feedback enabled by the presence
of the source resistance. This can be illustrated by considering
the origin of the total output current at a mixing frequency of

in response to a single-tone input at . The equivalent
circuit for the calculation, based on the “method of nonlinear
currents” [28, pp. 190–207], is shown in Fig. 8(a); for simplicity,
we have assumed .
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(a)

(b)

Fig. 8. (a) Equivalent circuit, based on the method of nonlinear currents,
for computing the output distortion at a mixing frequency of 2! in response
to a single-tone input at ! . (b) One manner of visualizing the feedback
mechanism described in the text; the only signals shown are those involved
in the second-order response at 2! . The charge coefficients c and c are
effective values, specified by the relations below (23).

The feedback mechanism, which is illustrated schematically
in Fig. 8(b), can be understood as follows. The application of
a source voltage causes a first-order base–emitter voltage at
a frequency to appear across the transistor’s input termi-
nals, with a phasor amplitude that we shall denote . In
response to , the transistor’s nonlinear transconductance
causes an output current at , with the phasor amplitude

. However, the appearance of also causes
nonlinear currents at to flow into the input of the transistor;
these are the quasi-static base current , and the charging
current . The presence of the source resistance then
causes a feedback voltage , at a frequency , which
opposes the effects of , to develop across the transistor’s
input terminals:

(65)

where is the equivalent impedance seen at the input, given
by

(66)

with ; note that if , then ,
and hence . The transistor’s linear transconductance
then acts on , creating an output current at

that opposes the original current . The net
distortion current at the output is thus

(67)

where (65) has been used. It is this subtraction, in (67), that
ultimately leads to the subtraction, or cancellation, identified in
(21). This is readily verified by substituting (66), along with
the values ,

, and , all of which
follow from the method of nonlinear currents, into (67), and then
comparing the result to , with
found from (20).

APPENDIX C
VALUE OF

The value of appearing in (50) is

(68)

APPENDIX D
THIRD-ORDER CURRENT CANCELLATION IN THE

HIGH-FREQUENCY LIMIT

The high-frequency limit of the third-order kernel, given by
(46), embodies a cancellation of intermodulation currents gen-
erated by the nonlinear transconductance and nonlinear stored
charge. This can be shown by applying the method of nonlinear
currents to compute the output distortion, at the intermodulation
mixing frequency of , that exists in the limit of infi-
nite tone frequencies ( ) and vanishing tone
spacing ( ). To simplify the discussion, we
will again assume , although the result holds even when

.
As suggested in [10, p. 444], the circuit of Fig. 8 can be used

for the calculation, provided that each of the current sources
is replaced by an appropriate one at . In the input
circuit, the required nonlinear currents, which arise from both
third-order nonlinearities and second-order interactions, can be
written in terms of lower order mixing voltages, as follows:

(69)
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(70)

where “ ” denotes complex conjugation. In the high-frequency
limit, the quasi-static base current is clearly negli-
gible in comparison with the current generated by the
nonlinear stored charge; additionally, the impedance between
the input terminals approaches . Therefore, the
input voltage is determined solely by the transistor’s nonlinear
stored charge:

(71)
In the output circuit, the required currents are those due to
the nonlinear transconductance acting on lower order mixing
voltages, and the linear transconductance acting on .
These currents are given by the following expressions:

(72)

(73)

The net distortion at the output is then

(74)

where (71) and (73) have been used; hence, the output distortion
involves a cancellation, or subtraction, of intermodulation cur-
rents originating from the nonlinear transconductance and the
nonlinear stored charge. Employing (70) and (72), this result
can be expressed in the alternative form

(75)

Combining (44) and (46), it is also possible to write

(76)

By equating (76) with (74) and (75), one then obtains (52) in
Section IV-D.
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